

Atmospheric Infrared Sounder

ECMWF Climatology Ocean Emissivity Trends2010-04-23

Evan Manning

Jet Propulsion Laboratory, California Institute of Technology

ECMWF Climatology

- I Discussed ECMWF Climatology in May & Sept 2009 AIRS Science Team meetings
 - We extract ECMWF forecast at AIRS overpass locations/times
 - Separate by land/ocean
 - Produce Level-2 simulated files
 - Process to Level-3 daily and monthly files
 - Roll up multiple years to monthly climatology files in AIRS Level-3 format
 - Software used in Level-2 retrieval extracts appropriate info given month, latitude, longitude, ascending vs. descending, land fraction
 - Files and software are available to the science team.

ECMWF Climatology

- Progress since September 2009:
 - ECMWF climatology now replaces the old NCEP/UARS climatology as the default background in the JPL retrieval system
 - This has limited effect on retrievals because both MW-only and regression completely ignore the background except above 100 hPa
 - When both regression and MW-only retrieval steps are skipped this leaves a better starting point for cloud clearing + physical retrieval
 - More ECMWF forecast data has been received.
 - 6+ years with many small gaps and a few large ones.
 - Thanks Scott!
 - More ECMWF forecast has been processed to L3 for incorporation.
 - 59 months 2003-2009
 - New ECMWF Clim with 3-4 years for each month (2005-8)
 - Soon to be 4-6 with the addition of 2009
 - Standard deviation now more fully reflects interannual variability

Jet Propulsion Laboratory California Institute of Technology California Institute On California Institute On

Atmospheric Infrared Sounder

Pasadena, California

- This is a histogram of the tropopause pressure
- Before Feb 2006 ECMWF had 60 vertical layers
- Since Feb 2006 ECMWF has 91 vertical layers
 - Spatial resolution also increased from ½ to ¼ degree
- Interpolation of temperature profiles gives some layers which cannot have a tropopause or other kink
- This effect can be seen in AIRS v5 retrievals because pre-2006 ECMWF was used to train the regression
 - If we're going to use tropopause-relative trace-gas climatologies then we really need a good tropopause

ECMWF Climatology Gotchas: Tropical Tropopause Detail

Atmospheric Infrared Sounder

Copyright 2010
California Institute of Technology
Government sponsorship acknowledged

- Since February 2006 (91 layers):
 - The distribution of tropopauses is relatively continuous.
 - The peak of the distribution of tropical tropopauses is ~93 hPa.
- Before February 2006 (60 layers):
 - The distribution is discontinuous at bin boundaries
 - The peak is sharper and is shifted to ~100 hPa

ECMWF Gotchas: ECMWF changes

- ECMWF is an operational forecast, not a consistent reanalysis.
- They update their model frequently
 - http://www.ecmwf.int/products/data/ operational_system/evolution/

ECMWF Climatology Gotchas: Day/Night Tsurf differences

- **Each quadrant** shows a time series of day night surface **temperature 2005-2009**
- For land, AIRS and ECMWF agree well
- For ocean, **ECMWF** showed no day/night differences until Dec 2008

ECMWF Climatology Gotchas: Day/Night Tsurf differences

Atmospheric Infrared Sounder

- ECMWF
 Ocean
 showed no
 day/night
 differences
 until Dec 2008
- Zonal means now vary seasonally between ~0.0 and ~0.5 K.
- Still somewhat smaller than AIRS

Copyright 2010
California Institute of Technology
Government sponsorship acknowledged

ECMWF Climatology AIRS Science Team Meeting April 21-23 2010, Pasadena CA

ECMWF Gotchas: Stratospheric H2O

Atmospheric Infrared Sounder

- The AIRS L2 retrieval largely uses its climatology guess H2O above 100 hPa unchanged
 - It is adjusted to match at 100 hPa
- For this tropical case:
 - The new ECMWF clim is drier than the old NCEP/UARS clim
 - But the shape is similar so, after shifting, the retrieved strat H2O is similar

Copyright 2010
California Institute of Technology
Government sponsorship acknowledged

ECMWF Gotchas: Stratospheric H2O

- For this south polar case:
 - The new ECMWF
 clim is much drier
 than the old NCEP/
 UARS clim
 - The shape is very different around 100 hPa.
 - The retrieved strat
 H2O is much drier

Climatology Conclusions

Atmospheric Infrared Sounder

Problems arise with a simple collection of ECMWF data for climatology:

- Bad tropopause structure if we use data before February 2006
- Problems with polar stratospheric H2O
- Day/Night differences underpredicted if we use data before December 2009

An excellent AIRS-specific climatology could be built if demand is high enough:

- Adjust polar 100 hPa structure
- Merge different fields from different time ranges
 - Standard deviations from the entire mission to get interannual variability
 - Fine vertical structure using one data since Feb 2006
 - Ocean Tsurf only since Dec 2009

Atmospheric Infrared Sounder

Bonus Topic: Ocean Emissivity Trends

V5.0 vs. V5.6

Tropical ocean emissivity spectrum v5.0

- V5.0 tropical ocean emissivity:
 - Had a clear increasing trend at all frequencies
 - Had large day/night differences in the shortwave region

Tropical ocean emissivity spectrum v5.6

- V5.6 tropical ocean emissivity:
 - Decreases trends at all frequencies
 - Still has residual trends 1200-1400 & 2200-2400 cm-1
 - These are not window regions
 - Trend in 2200-2400 cm-1 may be only in daytime
 - Decreases day/night differences in the shortwave region
 - Introduces a new kink in daytime shortwave emissivity

Tropical ocean emissivity spectra

Ocean Emissivity by Month

- V5.0 emissivity had a strong seasonal cycle in nighttime emissivity
- V5.6 does not

Emissivity Conclusions

- V5.6 ocean emissivity is better by most metrics:
 - √ Trend reduction
 - X But some residual trend remains
 - √ Day vs. night differences
 - √ Seasonal cycle
 - √ All cases with Emissivity > 1.0 eliminated
 - √ Cases with Emissivity < 0.95 greatly reduced</p>
 - X Shortwave structure introduced